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Accelerated FD Analysis of Dielectric Resonators

Jacek Mielewski, Andrzefwikta, and Michat MrozowskiMember, IEEE

Abstract—Finite-difference frequency-domain (FDFD) formu- vantage that additional equations are not required to satisfy
lation, based on Yee's mesh, is used for determination of resonant the boundary conditions.
frequencies of _rotatl_onally symmetric shielded dielectric res- In this letter we use the approach based on Yee’s mesh
onators. Resulting eigenproblems are solved by means of the . . . . . .
Armnoldi method with Chebyshev preconditioning. similar to thg one described in [4]. We cqn3|de_r rotation-

ally symmetric structures so that a three-dimensional (3-D)

problem can be converted to an equivalent two-dimensional
(2-D) one in a transverse—z space. Divergence equation
is used to eliminate the azimutha-component from the
|. INTRODUCTION full £ or H formulation leading to a sparse nonsymmetric

IELDED dielectric resonators (DR’s) using anisotropi€'9enproblem for hybrid mode& .., HEq. (m > 0).
niaxial crystals, such as sapphire, as well as isotrop?’(E’Ch an lapproac_h reduces the size of the elge_nproblems and
media are widely used in microwave technique due to théllSC @voids spurious zero-eigenvalues. The eigenvectors of
very low-loss nature. Numerical techniques for the analysis B¢ resulting eigenproblem ad,—£. or H,—H. fields, and
such DR’s include modal expansions with the Rayleigh—Rif?"eSpond'ng eigenvalues are squares of angular frequencies
method [1], mode matching [2], [3], finite-element method i i i .
(FEM) [1], or finite-difference frequency domain (FDFD) For azimuthally invariant modesr{ = 0), formulation
based on Yee's grid [4] or on a single collocated mesh [5f]gr one ammuthab—pomponent is used, which leads to the
[6]. Amongst them, the most versatile and able to deal wiffP2rs€ nonsymmetric eigenproblems for, Bad TM, modes.
arbitrary shaped boundaries and inlays are the FDFD ahf€ €igenvectors arety or H, fields, respectively, and
FEM methods. Depending on analytical formulation used sgPrresponding eigenvalues are squares of angular frequencies
deriving numerical equations, these techniques transform “n
infinite dimensional electromagnetic eigenvalue problem into
a large sparse symmetric or nonsymmetric matrix eigenvalue [ll. SOLUTION OF THE EIGENPROBLEM

problem. Compared to FEM, the FDFD results in a standard, oy the solution of the eigenproblem we used the implicitly

rather than a generalized, eigenproblem. Standard probl&@siarted Amoldi algorithr This method requires calculation
are easier to deal with using numerical techniques and thgjra product of a matrix operator and a vector provided by
solution is faster. Numerical algorithms which are recomne aigorithm. Each Amoldi iteration requires calculation of
mended for fmdmg a few e|genvalues'of a I.arge nonsymmetﬂgS product at mosp — ¢ times (except of the first one which
_elgen_problem include the subspace |te_rat|0n or 3|multane%d$ products), where is the number of eigenvalues to be
|terat|pn (Sl) method and the A_rnoldl methqd [7]. Thes_gound andp (p > q) is the size of the subspace. In practice
techniques can be substantially improved using polynomiglis chosen to be much smaller than the sizeof matrix
preconditioning, i.e., of the Chebyshev type [5], [7]. The aifBperator. Internally, each iteration of the Arnoldi algorithm
of this letter is to compare accuracy of two EDFD formuIaﬂonﬁequires the solution of thex p eigenproblem by means of the
and to examine performance of the algorithm based on g method. External calculation of the matrix—vector product

Arnoldi method with Chebyshev preconditioning relative t@nq internal solution of the x p eigenproblem dominate the
accelerated version of Sl method (SIC) reported in [5] and [ha) time of the Arnoldi algorithm.

Standard Chebyshev preconditioning technique was im-
II. FINITE-DIFFERENCE FORMULATION plemented in the way similar to the one described in [5].

Finite differences in electromagnetic problems can be mg:_hebyshev polynomial of ordek is applied to an operator

. . , nﬁ\trix via a recurrence formula so th&t matrix—vector
plemented in two ways. One approach is to use Yee’s mes

[4] which allows an easy implementation of integral foerrOd“CtS are calculated each time when the product of the

of Maxwell's equations. The second approach [5], [6] usé?erator matrix and the vector is required.

a single collocated mesh and is used mainly to discretize
wave equation. The former discretization method has an ad- IV. NUMERICAL RESULTS

. . In order to test the accuracy of the FDFD formulation we
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Fig. 1. DR structure and number of matrix—vector products taken in the analysis of the isotropic DR for different valussddf.

TABLE | TABLE 1
COMPARISON OF RESONANT FREQUENCIES[GIGAHERTZ] FOR THE SAPPHIRE DR COMPARISON OF RESONANT FREQUENCIES[GIGAHERTZ] FOR THE DR
(D =10.0 mm,b =15.6 mm,! = 13.0 mm,e; = 1, e = 1.031) LOADED WITH A DIELECTRIC RoD (D = 0.68 in, H = 0.3 in, b = 1.02
H = 10.0mm, ¢, = ¢y = 9.389, ¢, = 11.478 in, 1=0.6in e =162 =1 6 =€y = ¢ = 35.74)
Mode TMg,  EIL, HE,, Ty 1y, By, Mode TEy  EHy HE;, TMg Hby EH,,
Present FDED 7399 78&99 0114 9.709 12.053 153.514 Present FDFD 3.433  4.229 4318 4.541 5.000 5.323
I'D-SIC [6] 7.359 8.845 9.113 9.706 12.048 13.522 FD-SIC [5)] 3129 1205 310 4512 1.992 5.311
Mode-Matching [3] | 7.339  8.827 9.121  9.720 Mode Matching [2] | 3428 1.221 1.326 1.551 5.00 5.33
Dillerence rel. to [3]] 0.23% 0.06% 0.08% 0.11% Difference rel. to [2]] —0.15% —0.12% 0.18% 0.22% 0.00% 0.13%
H =50mm, e, = ¢, = 9.399, ¢, = 11.553
Mode EH“ TE\I()| TE()1 HEH HEQ[ EH2] . i i .
Present FDFD 9.818 10.651 10.701 12.157 14.594 15.241 We also analyzed a cylindrical cavity loaded with an
FD-STC [6] 9.873 10.696 10.696 12.163 14.595 15.254 isotropic dielectric rod. An equidistant 5% 30 grid was
y Matchine [f O R/ 5110704 19.15° . . .
8};(1« Mdﬂlim: [-[3_3}] -r:)-?zf_l(/ %)Ul»ff)‘; %)0(-) 6?/4 1[2)(1];; used. The size of the resulting eigenproblem was: 3000
lterence rel. to |< —U.U7 e ULZ7e UL r —Ula7e . .
2 - ‘ - for hybrid modes whilen =~ 1500 for TE, and TM, modes.

Calculated resonant frequencies are presented in Table Il along
used a 78x 65 equidistant grid taking into account thewith the results for the FDFD method based on single grid [5]
symmetry in thez-direction (only one half of the structureand the mode-matching method [2]. As in the first test, the
was analyzed). Two cases with different heights and slighthPFD with Yee’'s grid appears to be more accurate (except
different permittivities of the sapphire rod were considerefor TEy; and TMy; modes) than the single-grid formulation
Resonant frequencies of the dominant,T&hd TMy, modes and the maximum difference relative to the mode-matching
(n ~ 5000) and hybrid HE and EH modes { =~ 10000) method was 0.22%.
were computed. The results of calculations are presentedlo test the efficiency of the solver and compare it with SI
in Table I. For comparison, the results for FDFD based ome computed two dominang & 2) TE, odd modes (magnetic
a single-mesh [6] and mode-matching method [3] are algell in the symmetry plane) for the structure described above,
included. One can see that the resonant frequencies calculat@tl accuracy to the third decimal. The results are presented in
with the FDFD incorporating Yee's grid are more accurat&able Ill. For unaccelerated case we observed that as the size
than the ones obtained with a single grid. It means that thésubspace increases, the number of iterations decreases and
implementation of boundary conditions in Yee's formulatioso does the number of matrix—vector products. Nevertheless,
is more accurate. The maximum difference relative to the mothe total calculation time increases due to more costly internal
matching method does not exceed 0.25%. p x p eigenproblem solutions for larger values pf On
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TABLE Il 4 s and correspond to the speedups of the same order. General

COMPUTATIONAL COST OF ANALYSIS OF THE ISOTROPIC observations for other mode types (TM, HE, EH) are similar.
DR IN UNACCELERATED CASE AND CALCULATION TIME

FOR OPTIMAL ORDER OF CHEBYSHEV POLYNOMIAL k

P 4 5 10 15 20 25 30 35 40 50 V. CONCLUSIONS
iterations | 5343 1483 155 84 52 37 28 30 20 17 ) , _
matvec | 10688 4443 1228 1083 933 850 782 987 760 816 The FDFD formulation based on Yee's dual grid was found
time [s] | 106.6 13.2 12.6 12.7 12.8 13.3 13.117.9 15.3 19.1 to be more accurate in implementing boundary conditions than
ace. time [s]| 3.9 3.2 2.9 31 3.1 3.1 35 29 33 1.3 the one based on single grid. Performance of the Arnoldi
(gt ) (60) (20) (10) (20) (20) (10) (30) (20) (20) (20)

solver with Chebyshev preconditioning strongly depends on
the choice of the subspace sigeand the polynomial order

k. Once they are properly chosen, implicitly restarted Arnoldi

the other hand, whep decreases, the number of requireghethod can offer considerable memory and time savings and
matrix—vector products rapidly grows up and the total timgan be more efficient than subspace iteration.

also increases.

These tradeoffs can be easily mitigated when the Arnoldi
method is combined with Chebyshev preconditioning tech- ) _
nique causing that the number of iterations taken is si%-The authors would like to thank the Academic Computer
nificantly reduced. For example, fat0 < p < 20 the enter in Gdask TASK for the use of their facilities to carry
decrease is by the factor @15 for k& = 10 and =30 for Out the calculations.

k = 20. This causes that total calculation time is dominated
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