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Accelerated FD Analysis of Dielectric Resonators
Jacek Mielewski, Andrzej́Cwikła, and Michał Mrozowski,Member, IEEE

Abstract—Finite-difference frequency-domain (FDFD) formu-
lation, based on Yee’s mesh, is used for determination of resonant
frequencies of rotationally symmetric shielded dielectric res-
onators. Resulting eigenproblems are solved by means of the
Arnoldi method with Chebyshev preconditioning.

Index Terms—Arnoldi method, dielectric resonators, finite-
difference methods.

I. INTRODUCTION

SHIELDED dielectric resonators (DR’s) using anisotropic
uniaxial crystals, such as sapphire, as well as isotropic

media are widely used in microwave technique due to their
very low-loss nature. Numerical techniques for the analysis of
such DR’s include modal expansions with the Rayleigh–Ritz
method [1], mode matching [2], [3], finite-element method
(FEM) [1], or finite-difference frequency domain (FDFD)
based on Yee’s grid [4] or on a single collocated mesh [5],
[6]. Amongst them, the most versatile and able to deal with
arbitrary shaped boundaries and inlays are the FDFD and
FEM methods. Depending on analytical formulation used for
deriving numerical equations, these techniques transform an
infinite dimensional electromagnetic eigenvalue problem into
a large sparse symmetric or nonsymmetric matrix eigenvalue
problem. Compared to FEM, the FDFD results in a standard,
rather than a generalized, eigenproblem. Standard problems
are easier to deal with using numerical techniques and their
solution is faster. Numerical algorithms which are recom-
mended for finding a few eigenvalues of a large nonsymmetric
eigenproblem include the subspace iteration or simultaneous
iteration (SI) method and the Arnoldi method [7]. These
techniques can be substantially improved using polynomial
preconditioning, i.e., of the Chebyshev type [5], [7]. The aim
of this letter is to compare accuracy of two FDFD formulations
and to examine performance of the algorithm based on the
Arnoldi method with Chebyshev preconditioning relative to
accelerated version of SI method (SIC) reported in [5] and [6].

II. FINITE-DIFFERENCE FORMULATION

Finite differences in electromagnetic problems can be im-
plemented in two ways. One approach is to use Yee’s mesh
[4] which allows an easy implementation of integral forms
of Maxwell’s equations. The second approach [5], [6] uses
a single collocated mesh and is used mainly to discretize
wave equation. The former discretization method has an ad-
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vantage that additional equations are not required to satisfy
the boundary conditions.

In this letter we use the approach based on Yee’s mesh
similar to the one described in [4]. We consider rotation-
ally symmetric structures so that a three-dimensional (3-D)
problem can be converted to an equivalent two-dimensional
(2-D) one in a transverse– space. Divergence equation
is used to eliminate the azimuthal-component from the
full or formulation leading to a sparse nonsymmetric
eigenproblem for hybrid modes , ( ).
Such an approach reduces the size of the eigenproblems and
also avoids spurious zero-eigenvalues. The eigenvectors of
the resulting eigenproblem are – or – fields, and
corresponding eigenvalues are squares of angular frequencies

.
For azimuthally invariant modes ( ), formulation

for one azimuthal -component is used, which leads to the
sparse nonsymmetric eigenproblems for TEand TM modes.
The eigenvectors are or fields, respectively, and
corresponding eigenvalues are squares of angular frequencies

.

III. SOLUTION OF THE EIGENPROBLEM

For the solution of the eigenproblem we used the implicitly
restarted Arnoldi algorithm.1 This method requires calculation
of a product of a matrix operator and a vector provided by
the algorithm. Each Arnoldi iteration requires calculation of
this product at most times (except of the first one which
needs products), where is the number of eigenvalues to be
found and is the size of the subspace. In practice

is chosen to be much smaller than the sizeof matrix
operator. Internally, each iteration of the Arnoldi algorithm
requires the solution of the eigenproblem by means of the
QR method. External calculation of the matrix–vector product
and internal solution of the eigenproblem dominate the
total time of the Arnoldi algorithm.

Standard Chebyshev preconditioning technique was im-
plemented in the way similar to the one described in [5].
Chebyshev polynomial of order is applied to an operator
matrix via a recurrence formula so that matrix–vector
products are calculated each time when the product of the
operator matrix and the vector is required.

IV. NUMERICAL RESULTS

In order to test the accuracy of the FDFD formulation we
calculated resonant frequencies of a cylindrical DR structure
presented in Fig. 1, partially filled with dielectric inlays. We

1http://www.caam.rice.edu/software/ARPACK.
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Fig. 1. DR structure and number of matrix–vector products taken in the analysis of the isotropic DR for different values ofp andk.

TABLE I
COMPARISON OFRESONANT FREQUENCIES[GIGAHERTZ] FOR THE SAPPHIRE DR

(D = 10:0 mm, b = 15:6 mm, l = 13:0 mm, �1 = 1, �2 = 1:031)

used a 78 65 equidistant grid taking into account the
symmetry in the -direction (only one half of the structure
was analyzed). Two cases with different heights and slightly
different permittivities of the sapphire rod were considered.
Resonant frequencies of the dominant TEand TM modes
( ) and hybrid and modes ( )
were computed. The results of calculations are presented
in Table I. For comparison, the results for FDFD based on
a single-mesh [6] and mode-matching method [3] are also
included. One can see that the resonant frequencies calculated
with the FDFD incorporating Yee’s grid are more accurate
than the ones obtained with a single grid. It means that the
implementation of boundary conditions in Yee’s formulation
is more accurate. The maximum difference relative to the mode
matching method does not exceed 0.25%.

TABLE II
COMPARISON OFRESONANT FREQUENCIES[GIGAHERTZ] FOR THE DR

LOADED WITH A DIELECTRIC ROD (D = 0:68 in, H = 0:3 in, b = 1:02

in, l = 0:6 in, �1 = 1, �2 = 1, �r = �� = �z = 35:74)

We also analyzed a cylindrical cavity loaded with an
isotropic dielectric rod. An equidistant 51 30 grid was
used. The size of the resulting eigenproblem was
for hybrid modes while for TE and TM modes.
Calculated resonant frequencies are presented in Table II along
with the results for the FDFD method based on single grid [5]
and the mode-matching method [2]. As in the first test, the
FDFD with Yee’s grid appears to be more accurate (except
for TE and TM modes) than the single-grid formulation
and the maximum difference relative to the mode-matching
method was 0.22%.

To test the efficiency of the solver and compare it with SI
we computed two dominant ( ) TE odd modes (magnetic
wall in the symmetry plane) for the structure described above,
with accuracy to the third decimal. The results are presented in
Table III. For unaccelerated case we observed that as the size
of subspace increases, the number of iterations decreases and
so does the number of matrix–vector products. Nevertheless,
the total calculation time increases due to more costly internal

eigenproblem solutions for larger values of. On
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TABLE III
COMPUTATIONAL COST OF ANALYSIS OF THE ISOTROPIC

DR IN UNACCELERATED CASE AND CALCULATION TIME

FOR OPTIMAL ORDER OF CHEBYSHEV POLYNOMIAL k

the other hand, when decreases, the number of required
matrix–vector products rapidly grows up and the total time
also increases.

These tradeoffs can be easily mitigated when the Arnoldi
method is combined with Chebyshev preconditioning tech-
nique causing that the number of iterations taken is sig-
nificantly reduced. For example, for the
decrease is by the factor of15 for and 30 for

. This causes that total calculation time is dominated
by the time spent in matrix–vector operations. The number
of computed products is shown in Fig. 1 for a few different
Chebyshev polynomial orders. We see that there are many
cases where we need only 700 products to get convergence,
especially for and . This result is
30% better than the one reported in [5], where subspace
iteration solver needed 1000 products. For large values of
the Arnoldi algorithm makes only one iteration. It requires
matrix–vector products, and if in not sufficiently small the
calculations are inefficient.

As can be seen in Table III, the optimal total calculation
time for accelerated case was 12.6 s for on our SGI
Power Challengearchitecture. The shortest times are observed
for and offering the smallest number of matrix–vector
products, i.e., 2.9 s for and the same as above, which
gives the speedup factor . All points below a thick dotted
line in Fig. 1 indicate the total calculation times smaller than

4 s and correspond to the speedups of the same order. General
observations for other mode types (TM, HE, EH) are similar.

V. CONCLUSIONS

The FDFD formulation based on Yee’s dual grid was found
to be more accurate in implementing boundary conditions than
the one based on single grid. Performance of the Arnoldi
solver with Chebyshev preconditioning strongly depends on
the choice of the subspace sizeand the polynomial order
. Once they are properly chosen, implicitly restarted Arnoldi

method can offer considerable memory and time savings and
can be more efficient than subspace iteration.
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